Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhật Nguyễn

choa,b,c>0;\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)1

cmr\(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\le\frac{1}{2}\)

Kiệt Nguyễn
27 tháng 5 2020 lúc 11:08

Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)

và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)

Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)

\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)

Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)

Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Baek Hyun
Xem chi tiết
Love
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Họ Và Tên
Xem chi tiết
An Vy
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
khanh
Xem chi tiết