Cho a,b,c>0 và a+b+c=1 Tìm min A = \(\frac{a^2}{\sqrt{a+b}}+\frac{b^2}{\sqrt{b+c}}+\frac{c^2}{\sqrt{c+a}}\) Tìm max B = \(\frac{a^2}{\sqrt[3]{3b+c}}+\frac{b^2}{\sqrt[3]{3c+a}}+\frac{c^2}{\sqrt[3]{3a+b}}\)
choa, ,b,c là 3 cạnh tam giác tm a+b+c=1
cmr \(1< \frac{b}{\sqrt{a+b^2}}+\frac{c}{\sqrt{b+c^2}}+\frac{a}{\sqrt{c+a^2}}< 2\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
a,b,c>0
a+b+c=3
chứng minh \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a}+1}\ge\frac{3\sqrt{2}}{2}\)
Cho a,b,c là các số dương, Cm:
\(\frac{1}{\sqrt{a}+3\sqrt{b}}+\frac{1}{\sqrt{b}+3\sqrt{c}}+\frac{1}{\sqrt{c}+3\sqrt{a}}\ge\frac{1}{\sqrt{a}+2\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{b}+2\sqrt{c}+\sqrt{a}}+\frac{1}{\sqrt{c}+2\sqrt{a}+\sqrt{b}}\)
Giúp Mình Với các bạn ơi !!!!!
cho a;b;c>0; a+b+c=6 tìm min
\(P=\frac{a}{\sqrt{b^3+b^2}+4}+\frac{b}{\sqrt{b^3+b^2}+a}+\frac{c}{\sqrt{c^3+c^2+4}}...\)
Cho biểu thức f(x;y) \(=\frac{2x^2+3xy^3-4x^2y-7y^3-2018}{3x-2y+\sqrt{3x^4+2y^2+3}-3x\sqrt[3]{y^2}+5}\).Gọi a,b,c là các số thực thỏa mãn:
\(\hept{\begin{cases}\sqrt{2}a+\sqrt[3]{3}b-\left(\sqrt{2}+1\right)c=\sqrt{2}\\2\sqrt{3}a-3\sqrt{2}b-\left(3-2\sqrt{7}\right)c=\sqrt{5}\\3\sqrt[3]{2}a-\left(1-3\sqrt{5}\right)b-2\sqrt{5}c=\sqrt{7}\end{cases}}\).Đặt A = f(a;b) , B = f(b;c), C = f(c;a).
Tìm min \(P=\frac{ABt^2-A^2t-C\left(A-1\right)}{Bt^2-At-C}\)
(Trích đề thi học sinh giỏi máy tính cầm tay)