Ta có:
\(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\)
\(=101.50\)
Để chứng minh \(A\) chia hết cho \(B\) ta chứng minh \(A\) chia hết cho 50 và 101
Ta có:
\(A=\left(13+1003\right)+\left(23+993\right)+...+\left(503+513\right)\)
\(=\left(1+100\right).\left(12+100+1002\right)+\left(2+99\right).\left(22+2.99+992\right)+...+\left(50+51\right).\left(502+50.51+512\right)\)
\(=101.\left(12+100+1002+22+2.99+992+...+502+50.51+512\right)\)
chia hết cho 101 ( 1 )
Lại có:
\(A=\left(13+993\right)+\left(23+983\right)+...+\left(503+1003\right)\)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: A chia hết cho 101 và 50 nên A chia hết cho B
tính luôn kết quả cho dễ CM
Ta có:
(n-1)n(n+1)=n3 - n
\(\Rightarrow\) n3 = n+(n-1)n(n+1)
áp dụng vào A ta được:
\(A=1+2+1.2.3+3+2.3.4+......+100+99.100.101\)
\(=\left(1+2+3+....+100\right)+\left(1.2.3+2.3.4+....+99.100.101\right)\)
\(=5050+101989800=101994850\left(1\right)\)
Ta lại có:
\(B=1+2+3+....+100\)
\(=101+101+101+.....+101\) (50 số hạng)
\(=101.50=5050\left(2\right)\)
từ (1) và (2) ta có:
\(101994850:5050=20197\)
\(\Rightarrow\left(đpcm\right)\)