\(VT=1+2+2^3+...+2^{100}\)
\(2VT=2\left(1+2+2^3+...+2^{100}\right)\)
\(2VT=2+2^2+2^3+...+2^{101}\)
\(2VT-VT=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)\(VT=2^{101}-1\)
\(VT=VP\)
Thằng phúc chết tiệt, làm giúp ng` ta ko làm hết đuy, còn làm dở =))
Bài 2 :
a) Ta có :
\(3^{30}< 3^{34}\)
\(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}\)
Vì \(27^{10}>25^{10}\Leftrightarrow3^{30}>5^{20}\) (Mà \(3^{30}< 3^{34}\))
\(\Leftrightarrow5^{20}< 3^{34}\)
\(VT=2^{30}+3^{30}+4^{30}\)
\(=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}\)
\(=8^{10}+27^{10}+64^{10}\)
\(VP=3.4^{10}\)
\(=4^{10}+4^{10}+4^{10}\)
Ta có thể dễ thấy;
\(\left\{{}\begin{matrix}8^{10}>4^{10}\\27^{10}>4^{10}\\64^{10}>4^{10}\end{matrix}\right.\)
\(\Rightarrow VT>VP\)