cho 3 số đôi 1 khác nhau .CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho 3 số a,b,c đôi một phân biệt. CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\\ \)
Cho 3 số a,b,c đôi một khác nhau. Cmr:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)= \(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
CHO 3 SỐ A,B,C ĐÔI MỘT KHÁC NHAU. CMR:
\(\frac{B-C}{\left(A-B\right)\cdot\left(A-C\right)}+\frac{C-A}{\left(B-C\right)\cdot\left(B-A\right)}+\frac{A-B}{\left(C-A\right)\cdot\left(C-B\right)}=\frac{2}{A-B}+\frac{2}{B-C}+\frac{2}{C-A}\)
GIÚP MÌNH VỚI
CMR
\(\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
CMR : Nếu a,b,c khác nhau thì :
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
cho \(\frac{a+b}{2018}=\frac{b+c}{2019}=\frac{c+a}{2020}\)
CMR \(\left(b-c\right)^2=4\left(b-a\right)\left(a-c\right)\)
Cho\(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh
1,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a.c}{b.d}\)
2,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a^2-c^2}{b^2-d^2}\)
\(3,\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
\(4,\left(b+d\right).c=\left(c+c\right).d\)
\(5,\frac{4.a-12.b}{8.a+11.b}=\frac{4.c-12.d}{8.c+11.d}\)
\(6,\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(7,\frac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\frac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)