Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-\frac{x}{x}=\frac{z+y}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+y}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)\(=\frac{y+z-z-x}{x-y}=\frac{y-x}{x-y}=-1\)(1)
Ta lại có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)(2)
Từ(1),(2) => \(B=-1.\left(-1\right).\left(-1\right)=-1\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)( \(x,y,z\ne0\))
\(\Rightarrow y+z=2x\); \(z+x=2y\); \(x+y=2z\)(1)
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\)(2)
Từ (1) và (2) \(\Rightarrow B=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)