Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Black

Cho3 số x;y;z khác 0 thỏa mãn điều kiện  \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\) Khi đó B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)bằng..........

Trang Nguyễn
16 tháng 1 2020 lúc 18:15

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-\frac{x}{x}=\frac{z+y}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+y}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)\(=\frac{y+z-z-x}{x-y}=\frac{y-x}{x-y}=-1\)(1)
Ta lại có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)(2)

Từ(1),(2) => \(B=-1.\left(-1\right).\left(-1\right)=-1\)

Khách vãng lai đã xóa
Chu Công Đức
16 tháng 1 2020 lúc 18:37

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(=\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(x,y,z\ne0\))

\(\Rightarrow y+z=2x\)\(z+x=2y\)\(x+y=2z\)(1)

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\)(2)

Từ (1) và (2) \(\Rightarrow B=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Thị Hằng
Xem chi tiết
Lê Thị Tâm
Xem chi tiết
Dung Nguyen
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Midori Miyama
Xem chi tiết
Cỏ dại
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Evil
Xem chi tiết