Chọn C.
Giả sử w = x + yi(x, y ∈ R) là một căn bậc hai của số phức z = 3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là
Chọn C.
Giả sử w = x + yi(x, y ∈ R) là một căn bậc hai của số phức z = 3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là
Lập phương trình bậc hai có nghiệm là:
a) 1 + i 2 và 1 − i 2 ;
b) 3 + 2i và 3 − 2i;
c) − 3 + i 2 và − 3 − i 2 .
Trong không gian Oxyz, cho điểm I(3;-1;4) và mặt cầu ( S 1 ) : ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 1 . Phương trình của mặt cầu (S) có tâm Ivà tiếp xúc ngoài với mặt cầu ( S 1 ) là
Cho số phức z = ( 2 + i)( 3 - i) Tìm phần thực a và phần ảo b của số phức z ¯
A. a = 7 ; b = 1.
B. a = 7 ; b = -1.
C. a = - 7; b = 1.
D. a = -7; b = - 1.
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Lập phương trình bậc hai có nghiệm là: − 3 + i 2 và − 3 − i 2
Tìm nghịch đảo của số phức sau:
a) 2 − i 3 ;
b) i;
c) ;
d) (3 + i 2 )2.
Tìm số phức z thỏa mãn: ( 2 + i ) z = ( 3 - 2 i ) z ¯ - 4 ( 1 - i )
Cho z là số phức thay đổi thỏa mãn ( 1 + i ) z + 2 - i = 4 và M(x,y) là điểm biểu diễn cho z trong mặt phẳng phức. Tìm giá trị lớn nhất của biểu thức T = x + y + 3
A. T = 4 + 2 2
B. 8
C. 4
D. 4 2
Tìm nghiệm của phương trình: ( z + 3 - i)2 - 6( z + 3 - i) + 13 = 0
A. z = 3i; z = 1 - 2i
B. z = - i; z = 3i + 4
C. z = 3i + 4; z = 3i
D. z = 3i; z = -i