Cho x, y, z, t là các số nguyên dương thỏa mãn đẳng thức: \(x^2+z^2=y^2+t^2.\)Chứng minh rằng: x + y + z + t là hợp số
cho x y z t nguyên dương thỏa mãn x^2+z^2=y^2+t^2 chứng minh x+y+z+t là hợp số
jup mik vs
Cho các số nguyên dương x,y,z thỏa mãn x^2+y^2=z^2. chứng minh B=x^3y-xy^3 chia hết cho 7
Cho các số nguyên dương x,y,z thỏa mãn xy=zt-1 va x+y=z+t
CMR z=t
Cho 4 số nguyên x,y,z,t thỏa mãn x-y =c+d. CMR: x2+ y2+ z2 +t2 luôn là tổng của 3 số chính phương.
cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
Cho các số thực x, y, z, t khác 0 thỏa mãn: x mũ 2 + y mũ 2 = z mũ 2 + t mũ 2 = 2016 và xz + yt =0
CMR: x mũ 2 + z mũ 2 = y mũ 2 + t mũ 2 = 2016 và xy + zt = 0
Cho các số nguyên dương x,y,z thỏa mãn:
\(\hept{\begin{cases}x.y=\left(z.t\right)-1\\x+y=z+t\end{cases}}\)
CMR: z = t
cho các số dương x,y,z thoả mãn x^2+y^2+z^2 chia hết cho 2022.Chứng minh x+7y+13z là hợp số