CM xyz(1/x^3 + 1/y^3 + 1/z^3) = 3 à
Bài này là thực hiện phép tính hay chứng minh
CM xyz(1/x^3 + 1/y^3 + 1/z^3) = 3 à
Bài này là thực hiện phép tính hay chứng minh
Cho x.y.z.\(\left(\frac{1}{^{x^3}}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)= 3 biết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Cho các số x, y, z khác 0. Biết rằng \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\) và \(x^3+y^3+z^3=1\). Tính \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z \(\ne\)0 thỏa mãn \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)và \(x^3+y^3+z^3=1\).
Tính giá trị của \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z khác 0
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
x3+y3+z3=1
Tính A= \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
giải hộ mk bài này vs ạ
Cho x,y,z thỏa mãn :\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)và \(^{x^3+y^3+z^3=1}\)
Tính D= \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
a , cho x,y,z >0 ; xyz =1
CMR: \(\frac{x^3}{\left(1+y\right).\left(1+z\right)}\)+\(\frac{y^3}{\left(1+z\right).\left(1+x\right)}\)+\(\frac{z^3}{\left(1+x\right).\left(1+y\right)}\ge\frac{3}{4}\)
1) Cho x^3+y^3+z^3=3xyz; x+y+z khác 0
Tính P=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
2) Cho abc=2 tinh\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
Cho ba số dương x,y,z thỏa mãn xyz <=1 . Chứng minh rằng
\(\frac{x\left(1-y^3\right)}{y^3}+\frac{y\left(1-z^3\right)}{z^3}+\frac{z\left(1-x^3\right)}{x^3}\ge0\)0