Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương [Support]

Cho \(x,y,z>2\) thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng :

\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

bảo nam trần
4 tháng 8 2019 lúc 10:44

Đặt x-2=a; y-2=b; z-2=c (a,b,c>0)

Ta có: \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)

<=>\(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}\Leftrightarrow\frac{1}{a+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)

<=>\(\frac{1}{a+2}=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}=\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)

Tương tự ta cũng có: \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\left(2\right);\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\)

Nhân (1),(2),(3) vế theo vế ta được:

\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\sqrt{\frac{\left(abc\right)^2}{\left[\left(a+2\right)\left(b+2\right)\left(c+2\right)\right]^2}}\)

<=> \(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\) (đpcm)

Dấu "=" xảy ra khi a=b=c=3

tthnew
4 tháng 8 2019 lúc 10:47

Chia hai vế của cho xyz khác 0, ta cần chứng minh:

\(\left(1-\frac{2}{x}\right)\left(1-\frac{2}{y}\right)\left(1-\frac{2}{z}\right)\le\frac{1}{xyz}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\). Bài toán trở thành:

Cho 0 <a,b,c \(< \frac{1}{2}\) thỏa mãn \(a+b+c=1\). Chứng minh rằng:

\(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)\le abc\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

BĐT đến đây trở về dạng quen thuộc! Hoặc không thì nó hiển nhiên đúng theo BĐT Schur

nam trần
4 tháng 8 2019 lúc 18:35

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)

áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{y}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)

Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}};\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)

Nhân theo vế ta được \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

Phương [Support]
4 tháng 8 2019 lúc 8:29

Các câu hỏi tương tự
Agami Raito
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
Như Trần
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Khởi My
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết