Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z > 0 CMR
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge4\left(x+y+z\right)\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho \(x+y+z\ne0,\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Tính \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
cho x,y,z là các số thức khác 0 thỏa mãn
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)=-2, \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\)=0
tìm M=\(\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\) .CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+x}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)và \(x+y+z\ne0\)Tính \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
Cho x,y,z>0 và x+y+z=3 Tìm min:\(\frac{x^2}{y+3z}+\frac{y^{^2}}{z+3x}+\frac{z^2}{x+3y}\)