Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)
\(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)
\(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)
MinA=31 khi a=1; b=c=2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)
\(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)
\(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)
MinA=31 khi a=1; b=c=2
Cho \(x,y,z>0\) thỏa mãn \(x^2y+y^2z+z^2x=3\) tìm Min \(P=\frac{x^5y}{x^2+1}+\frac{y^5z}{y^2+1}+\frac{z^5x}{z^2+1}\)
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)
1.Cho x>0. Tìm Min của N=\(\frac{x^3+2000}{x}\)
2. Cho x>0, y>0, x+y\(\ge\)0. Tìm Min của P=\(5x+3y+\frac{12}{x}+\frac{16}{y}\)
3. Cho x, y, z\(\ge\)0, thỏa mãn x+y+z\(\ge\)12. Tìm Min của A=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
cho x,y,z>0 và \(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}=4\)
tìm min M: \(M=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
Cho x, y, z > 0 và x + y + z = 1. Tìm min S = \(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Cho x, y, z>0 và x+y+z\(\ge\)1. tìm Min A =\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z+\frac{1}{z^2}}\)
a. cho 2 số dương x,y thỏa man x: x+y=1
tìm min của bt : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)