CẦN GẤP!!
Cho x+y+z=0 xà x,y,z khác 0 rút gọn
a)P=\(\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b)Q=\(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}\)
Cho x , y , z khác 0 và x + y = z =0 . Rút gọn biểu thức : \(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{z^2+x^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
cho x y z là các số thực thỏa mãn điều kiện x+y+z=0 và xyz khác 0
Rút gọn phân thức B=\(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{x^3+y^3+z^3}\)
Cho x+y+z=0 Rút gọn:\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Rút gọn: x^2 + y^2 + z^2 / (y-z)^2 + (z-x)^2 + (x-y)^2, biết rằng x+y+z= 0
Rút gọn: x^2 + y^2 + z^2 / (y-z)^2 + (z-x)^2 + (x-y)^2, biết rằng x+y+z= 0
Cho x,y,z khác 0 , x+y khác z , y+z khác x và:
\(\frac{x^2+y^2-z^2}{2xy}-\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2zx}=1\)
Chứng minh rằng : \(x+y+z=0\)
thanks mn
Cho \(x+y+z=0\) Rút gọn : \(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Cho x,y,z khác 0 và x+y+z=0. Tính giá trị biểu thức
A=\(\frac{x^2}{y^2+z^2-x^2}\)+ \(\frac{^{y^2}}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)