Cho x,y,z>0 tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Cho x;y;z là các số dương và x + y + z = 3.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
1. a. Tìm x,y,z biết x2+4y2= 2xy +1 và z2=2xy -1
b. cho x+y+z=1 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)Tính Giá trị biểu thức B= x2+y2+z2
2. Cho x,y khác 0 thỏa mãn x+y=xy. Tìm giá trị nhỏ nhất của biểu thức sau:
A=\(\frac{1}{x^2}+\frac{1}{y^2}\)
Cho x, y, z là các số thực thuộc khoảng (0,1) và thỏa mãn xyz = (1-x)(1-y)(1-z).
Tìm giá trị nhỏ nhất của biểu thức: \(P=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x , y , z > 0 và x + y + x \(\ge\)4 . TÌm giá trị nhỏ nhất của
\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho 3 số x; y; z khác 0 thỏa mãn: \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
Tính giá trị của biểu thức P = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
a, Cho x3+y3+3(x2+y2)+4(x+y)+4=0 và x.y>0
Tìm giá trị lớn nhất biểu thức: M = \(\frac{1}{x}+\frac{1}{y}\)
b, Cho các số x, y, z thỏa mãn điều kiện: y2 + z2 + yz = 1 - \(\frac{3}{2}x^2\)
Tìm giá trị lớn nhất và nhỏ nhất của P = x + y + z
c, Cho ba số dương x, y, z thoả mãn điều kiện: \(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}Nêếu\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)Tính giá trị của biểu thức A=