Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
✓ ℍɠŞ_ŦƦùM $₦G ✓

cho x;y;z thuộc Z biết (x-y)(y-z)(z-x)=x+y+z

chứng minh x+y+z chia hết cho 27

Trần Thị Loan
9 tháng 9 2015 lúc 14:39

+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết  cho 3

=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27

+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y. 

*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3

 mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3

=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27

* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1

=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27

* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27

=> x+ y + z chia hết cho 27

+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3

=> x; y; z chia cho 3 dư là  0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3

x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3 

tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x)  = x+ y + z

=> Th3 không xảy ra

Vậy ....


Các câu hỏi tương tự
Lữ Vũ Quang
Xem chi tiết
Bạn Thân Yêu
Xem chi tiết
merida2003
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
Bạn Thân Yêu
Xem chi tiết
Phan Bảo Huân
Xem chi tiết
Đinh Gia Huy
Xem chi tiết
CAO THỊ VÂN ANH
Xem chi tiết
cao khanh linh
Xem chi tiết