Đặt \(x=2k;y=5k;z=7k\)
\(P=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4k}{5k}=\dfrac{4}{5}\)
Đặt \(x=2k;y=5k;z=7k\)
\(P=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4k}{5k}=\dfrac{4}{5}\)
cho x,y,z khác 0 thỏa mãn: 2( x+y)= 3(y+z)=4(z+x) tính
P= \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho các số x,y,z khác 0 thỏa mãn 2(x+y)=3(y+z)=4(x+z). Tính P = \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho x,y,z thỏa mãn: \(\dfrac{3x-2y+z}{x}\) = \(\dfrac{3y-2z+x}{y}\) = \(\dfrac{3z-2x+y}{z}\)
Tính Q = \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\)
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Cho x,y,z ≠ 0 thỏa mãn: 2(x+y) = 3(y+z) = 4(x+z)
Tính P = \(\dfrac{x}{y}\)+\(\dfrac{y}{z}\)+\(\dfrac{z}{x}\)
cho x,y,z là các số thực khác, thỏa mãn:
\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)
tính gtbt: \(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)
Cho x,y,z là các số khác 0 và \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\). CMR: hoặc x=y=z hoặc \(x^2y^2z^2=1\)
Tìm các số dương x,y,z thỏa mãn: \(\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}\)
Tìm x,y,z thỏa mãn:
\(\dfrac{x+2}{3}\)=\(\dfrac{y-5}{-4}\)=\(\dfrac{z+1}{5}\); 2x-3y+z=72 giúp tui với huhu