Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm x; y; z biết:
a) 2x/3 = 3y/4=4z/5 và x + y + z = 49
b)x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
c)x\2=y/3=z/5 và xyz=810
d)x:y:z=3:4:5 và 2x^2+2y^2-3Z^2 =100
Tìm x,y,z trong các trường hợp sau
a) \(\frac{1}{2}.x=\frac{2}{3}.y=\frac{3}{4}.z\)và x-y=15
b) 4x=3y,5y=4z và 2x+3y+5z=86
Cho x,y,z thoả mãn 2/x bằng 3/y bằng 1/z . Tìm x,y,z trong các trường hợp sau
2x - 3y conf3z bằng5
X mũ 2 y mũ 2 z mũ 2
a) 2x/3 =3y/4= 4z/5 và x+y+z=49
b) x/2=y/3=z/5 và xyz=810
Tìm x,y,z thỏa mãn
x/2=y/3=3z và 2x-3y+4z=1
cho x,y,z thõa mãn : 2/x = 3/y =1/z
tìm x,y,z thõa mãn đk sau:
a, TH1 :2x-3y+4z=5
b, TH2: x2 × y2 × z2=26