Áp dụng BĐT Cauchy - Schwarz dạng engle ta có:
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{1+x+1+y+1+z}=\frac{9}{3+\left(x+y+z\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
Vậy Min A = 3/2 khi x = y = z = 1