Cho các số thực x, y, z, a, b, c thỏa mãn: x+y+z=1; x2+y2+z2=1 và a/x=b/y=c/z.
Chứng minh rằng: ab + bc + ca =0
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Cho các số thực dương x,y,z thỏa mãn x+y+z \(\le\)1.Chứng minh \(\frac{1}{xz}+\frac{1}{yz}\ge\)16
Cho x, y, z là 3 số thực tùy ý thỏa mãn x + y + z = 0 và \(-1\le x\le1,-1\le y\le1,-1\le z\le1\)
Chứng minh rằng đa thức \(x^2+y^4+z^6\le2\)
Cho các số thực x,y,z thuộc [-1,2] thỏa mãn x+y+z=0.Chứng minh
a,\(x^2\)+\(y^2\)+\(z^2\)\(\le\)6
b,\(x^2\)+\(y^2\)+\(z^2\)\(\le\)2xyz+2
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Cho x,y,z là 3 số thực khác 0 thoả mãn đồng thời :x+y+z= a và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
Tính giá trị biểu thức S= \(\left(x^5-a^5\right)\left(y^7-a^7\right)\left(x^9-a^9\right)\)
nếu x;y;z là các số dương thì \(^{\frac{x2}{y+z}+\frac{y2}{x+z}+\frac{z2}{x+y}>=\frac{x+y+z}{2}}\)