Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phú Hồ Kim

cho x,y,z là các số thực thõa mãn: 2x=3y=5z và \(|x-2y|=5\)

 Tìm GTLN của 3x-2z

Thanh Tùng DZ
25 tháng 4 2018 lúc 9:19

| x - 2y | = 5

\(\Rightarrow\)\(\orbr{\begin{cases}x-2y=5\\x-2y=-5\end{cases}}\)

Theo bài ra : 2x = 3y = 5z

\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{3x}{45}=\frac{2y}{20}=\frac{2z}{12}=\frac{3x-2z}{45-12}=\frac{x-2y}{15-20}\)

+) với x- 2y = 5 thì \(\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=-1\)\(\Rightarrow3x-2z=-33\)

+) với  x - 2y = -5 thì \(\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=1\)\(\Rightarrow3x-2z=33\)

Vậy GTLN của 3x - 2z là 33

Huỳnh Quang Sang
25 tháng 4 2018 lúc 9:21

\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)

Vậy ...

\(\left|\frac{3y}{2}-2y\right|=5\)" thay \(x=\frac{3y}{2}\)vào "

\(\left|\frac{3y-4y}{2}\right|=5\)" quy đồng"

\(\left|\frac{-y}{2}\right|=5\)" rút gọn

Giá trị tuyệt đối với -y ta được:

\(\frac{y}{2}=5\Leftrightarrow y=10\)

Tương tự ta có :

\(x=\frac{5z}{2};2y=\frac{10z}{3}\)

\(\left|\frac{5z}{2}-\frac{10z}{3}\right|=5\Leftrightarrow\left|\frac{15z-20z}{6}\right|=5\Leftrightarrow\left|\frac{-5z}{6}\right|=5\)

Gía trị tuyệt đối  với -5z âm ta được :

 \(5z=30\Leftrightarrow z=6\)

Tương tự với x suy ra x = 15 "làm tắt "

Từ 1,2,3

Suy ra x = 15 ; y = 10 ; z = 6

Thay số ta được :

\(3.15-2.6=45-12=33\)


Các câu hỏi tương tự
Cristiano Ronaldo
Xem chi tiết
Nguyễn Nhị Hà
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Kim Long
Xem chi tiết
Cao Ngọc Hiển
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
nô nguy hiểm
Xem chi tiết
Pham Trong Bach
Xem chi tiết