Xét \(\left(x+y\right)\ge2\sqrt{xy}\)(1)
Tương tự ta có \(\left(z+y\right)\ge2\sqrt{zy}\)(2)
\(\left(x+z\right)\ge2\sqrt{xz}\)(3)
Nhân (1);(2);(3) theo vế ta được:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
=>\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\le\frac{xyz}{8xyz}=\frac{1}{8}\)
Đẳng thức xảy ra <=>x=y=z