Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các số thực dương x,y,z thỏa mãn xyz = 1.
CMR: \(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
cho x;y;z là các số không âm.CMR:\(3\left(x^2y+y^2z+z^2x\right)\left(xy^2+yz^2+zx^2\right)\ge xyz\left(x+y+z\right)^3\)
cho các số nguyên dương x,y,z thỏa mãn \(xyz=1\)chứng minh rằng
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
tìm ba số nguyên dương x,y,z thỏa mãn x+y+z+xy+yz+zx chia hết cho xyz
cho x;y;z là các số thực dương thỏa mãn x+y+z=3xyz.Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{yz}{x^3\left(z+2y\right)}+\frac{zx}{y^3\left(x+2z\right)}+\frac{xy}{z^3\left(y+2x\right)}\)
cho x,y,z thỏa mãn : (x+y+z) . (xy+yz+zx) = xyz và x+y+z #0
tính B= \(\frac{x^{2011}+y^{2011}+z^{2011}}{\left(x+y+z\right)^{2011}}\)
cho các số thực dương x,y,z sao cho xyz=1
CMR: \(\frac{1}{x+y+z}\)+\(\frac{1}{3}\)\(\ge\)\(\frac{2}{xy+yz+zx}\)
CMR: \(\left(x+y+z\right)^2\ge3\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\) với \(x,y,z\ge0\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)