Cho các số dương x,y,z thỏa mãn:
xy+yz+zx=1
Tìm GTLN của biểu thức
\(A=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+y^2}}\)
Cho các số dương x,y,z thỏa mãn
x+y+z=3
Tìm GTLN của biểu thức
\(B=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{yz}{yz+3x}}+\sqrt{\frac{zx}{zx+3z}}\)
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Bài 1:Cho a,b,c là các số dương thỏa mãn điều kiện:a+b+c+ab+bc+ca=9.chứng minh rằng
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge5\)
Bài 2: Tìm cặp số (x;y) thỏa mãn:
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Bài 3:Cho các số thực dương x;y;z thỏa mãn x+y+z=4.chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{xz}\ge1\)
Tìm các bộ số thực (x, y, z) thỏa mãn:
\(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\frac{1}{2}\left(x+y+z\right)\)
Cho x,y,z là 3 số thực dương thay đổi. Tìm min
\(Q=x\left(\dfrac{x}{2}+\dfrac{1}{yz}\right)+y\left(\dfrac{y}{2}+\dfrac{1}{xz}\right)+z\left(\dfrac{z}{2}+\dfrac{1}{xy}\right)\)
Cho 3 số dương x,y,z thỏa mãn: x2019 + y2019 + z2019 = 3.
Tìn giá trị lớn nhất của biểu thức M = x3 + y3 + z3
Cho 2 số thực dương x,y,z thảo mãn : xyz=1. Tìm giá trị lớn nhất của biểu thức :
\(P=\sum\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\)
Cho x, y là các số thực dương thỏa mãn x+y <=3.
Tìm GTNN của \(A=\frac{2}{3xy}+\sqrt{\frac{3}{y+1}}\)