\(A=\frac{2}{3xy}+\sqrt{\frac{3}{y+1}}\)
\(A\ge\frac{2}{3xy}+\frac{1+\frac{3}{y+1}}{2}\left(AM-GM\right)\)
\(A\ge\frac{2}{3xy}+\frac{3}{2\left(y+1\right)}+\frac{1}{2}\)
Ta có:\(\frac{2}{3xy}+\frac{x}{3}+\frac{y}{6}\ge1\left(AM-GM\right)\)
\(\frac{3}{2\left(y+1\right)}+\frac{y+1}{6}\ge1\left(AM-GM\right)\)
Cộng vế theo vế \(\Rightarrow A\ge2-\frac{x}{3}-\frac{y}{6}-\frac{y+1}{6}+\frac{1}{2}\)
\(A\ge\frac{5}{2}-\frac{x+y}{3}-\frac{1}{6}\)
\(A\ge\frac{5}{2}-1-\frac{1}{6}=\frac{4}{3}\)
"="<=>\(x=1;y=2\)