cho ba số x,y,z khác 0 thỏa mãn x+y+x =2010 ;\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=\(\frac{1}{2010}\)
chứng minh rằng trong 3 số x,y,x luôn tồn tại hai số đối nhau
Cho ba số x,y,z khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) Chứng minh rằng trong ba số x,y,z có ít nhất một cặp số đối nhau
cho x ,y ,z khác 0 thỏa mãn điều kiện : x+y+z=2015 và 1/x+1/y+1/z=2015
chứng ming rằng tồn tại ít nhất một trong ba số x,y,z bằng 2015
cho 3 số x, y, z khác 0 thõa mãn\(\hept{\begin{cases}x+y+z=2015\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\end{cases}}\)
Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau
cho \(\frac{x}{y}-\frac{y}{z}-\frac{z}{x}=\frac{y}{x}-\frac{z}{y}-\frac{x}{z}\). Chứng minh rằng trong ba số x,y,z tồn tại hai số bằng nhau hoặc đối nhau?
ai trả lời nhanh và chi tiết nhất mình sẽ tick đúng ạ, cảm ơn mọi người nhiều
Cho ba số thực khác không x, y, z thỏa mãn:
\(\hept{\begin{cases}x.y.z=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< x+y+z\end{cases}}\)
Chứng minh rằng có đùng một trong ba số x, y, z lớn hơn 1.
cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+x}\) . chứng minh rằng hai trong ba số x, y, z có hai số đối nhau.
Chứng minh rằng nếu x+y+z= a và 1/x+1/y+1/z=1/a thì tồn tại trong ba số x,y,z bằng a
Cho các số x,y,z đôi một khác nhau thỏa mãn:x^3(y-z)+z^3(x-y)=y^3(z-x).
Cmr: x^3+y^3+z^3=3xyz