Cho các số x,y,z không âm, ko đồng thời bằng ko thỏa mãn
\(\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\le1\)
Tìm GTNN của biểu thức \(P=x+y+z+\frac{1}{x+y+z}\)
cho các số không âm x,y,z thỏa mãn x+y+z=3
tìm mã và min của \(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)
Cho \(x,y,z\) không âm, không đồng thời bằng \(0\) và thỏa \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\). Tìm giá trị nhỏ nhất của \(P=x+y+z+\dfrac{1}{x+y+z}\)
Cho x,y,z>0 t/ m x+y+z=3. Tìm min
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho x,y,z>0 t/ m x+y+z=3. Tìm min
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
cho các số x,y,z đôi một khác nhau sao cho 0 bé hơn hoặc bằng x<y<z bé hơn hoặc bằng 2
Tìm min \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
cho x,y,z >0 và x+y+z=3 .tìm min của
A= \(x^2+y^2+z^3\)
B= \(\frac{x}{y^3+xy}+\frac{y}{z^3+yz}+\frac{z}{x^3+xz}\)
C= \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho \(\hept{\begin{cases}x,y,z>0\\x^2+y^2+z^2=3\end{cases}}\)
Tìm Min A=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho x,y,z>0; x+y+z=zy+yz+xz
CMR:\(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)