\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
Cho x,y,z khác 0 và\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tính A=\(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
biết x khác 0 , y khác 0 , z khác 0 và x+y+z=0
CMR : \(\left(\frac{x-y}{z}+\frac{y-z}{x}-\frac{z-x}{y}\right)\)\(\left(\frac{z}{x-y}-\frac{x}{y-z}+\frac{y}{z-x}\right)\)= 9
Cho x,y,z là các số khác 0 ; đôi một khác nhau va x+y+z =0 Chứng minh A= \(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)
biết x ;y;z khác 0 và x+y+z=0 chứng minh
\(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)=9
tính tổng sau đây với x,y,z ddoooi một khác nhau và khác 0
F=\(\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
Tính tổng sau với x,y,z đôi một khác nhau và khác 0
\(F=\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
Cho ba số x,y,z khác 0 và x+y+z=0. Tính giá trị của E:
\(E=\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{y}{z}+1\right)\)
Cho các số x, y, z khác 0. Biết rằng \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\) và \(x^3+y^3+z^3=1\). Tính \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)