x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-z.y.x)/(x.y.z)
B=-1
\(x-y-z=0\)
\(=>x=y-z\)
\(y=x-z\)
\(-z=y-x\)
\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\)
\(B=\left[\frac{\left(x-z\right)}{x}\right]\cdot\left[\frac{\left(y-x\right)}{y}\right]\cdot\left[\frac{\left(z+y\right)}{z}\right]\)
\(B=\left(\frac{y}{x}\right)\cdot\left(-\frac{z}{y}\right)\cdot\left(\frac{x}{z}\right)\)
\(B=\frac{\left(-z\cdot y\cdot x\right)}{\left(x\cdot y\cdot z\right)}\)
\(B=-1\)