Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lâm Thị Mai Hân

Cho x,y,z dương và x+y+z=1 Cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2yx}\ge9\)

ST
5 tháng 8 2018 lúc 14:04

Áp dụng BĐT Cosi dạng engel ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2xy+y^2+2zx+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\) (vì x+y+z=1)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

Nguyễn Gia Triệu
5 tháng 8 2018 lúc 14:46

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\)

                                                                  \(=\frac{9}{\left(x+y+z^2\right)}=\frac{9}{1}=9\)

Dấu "=" xảy ra khi x=y=z=1/3

Doraemon
31 tháng 8 2018 lúc 14:02

Áp dụng BĐT Cosi dạng engel, ta có:\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2xy+y^2+2zx+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

(vì \(x+y+z=1\))

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)


Các câu hỏi tương tự
Lê Hoài Duyên
Xem chi tiết
cai j vay
Xem chi tiết
Ba đứa làm CTV
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Đức Lộc
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
vũ thị ánh dương
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
Xem chi tiết