thay mark

cho x,y,z duong thoa man xy+yz+xz>=3

Chứng minh \(\frac{x^4}{y+3z}+\frac{y^2}{z+3x}+\frac{z^4}{x+3y}>=\frac{3}{4}\)

Mr Lazy
5 tháng 7 2015 lúc 15:28

Chứng minh một số bất đẳng thức phụ:

1. \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\ge3\)

2. \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\text{ (vừa chứng minh ở trên)}\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\)

3. \(x^2+y^2+z^2\ge xy+yz+zx\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+y+zx\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow x+y+z\ge\sqrt{3\left(xy+yz+zx\right)}\ge\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{\left(x^2+y^2+z^2\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}{4\left(x+y+z\right)}\)

\(\ge\frac{3.\frac{1}{3}\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 1.

Bình luận (0)
Mr Lazy
5 tháng 7 2015 lúc 15:35

C2: Áp dụng Co6si:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự \(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

\(\Rightarrow\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

(\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)\)

\(=3\left(xy+yz+zy\right)\ge9\)

\(\Rightarrow x+y+z\ge3\))

Dấu "=" xảy ra khi x = y = z = 1.

Bình luận (0)

Các câu hỏi tương tự
Đỗ Xuân Tuấn Minh
Xem chi tiết
hoanghongnhung
Xem chi tiết
THN
Xem chi tiết
Nguyen Tuan Dung
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Vũ Huy Đô
Xem chi tiết
Trần Kim Anh
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Lê Trường Lân
Xem chi tiết