Cho hình chữ nhật có AB = 2AD, gọi E và I lần lượt là trung điểm của AB và CD. Vẽ tia Dx vuông góc với DE, tia Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM = EK. Gọi G là giao điểm của DK và EM.
a, C/minh: DEKM là hình chữ nhật
b, Tính số đo góc DBK
c, Gọi H là chân đường vuông góc hạ từ K xuống BM. C/minh 4 điểm A; I; G; H cùng nằm trên 1 đường thẳng
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
Bài 1: Cho 2 điểm A,B thuộc cùng 1 nửa mặt phẳng có bờ là đường thẳng xy ( AB ko vuông góc với xy ). Gọi A' là điểm đối xứng với A qua xy, C là giao điểm của A' B và xy. Gọi M là điểm bất kì khác C thuộc đường thẳng xy. Chứng minh rằng AC + CB < AM + MB .
Bài 2 : Cho góc nhọn xOy, điểm A nằm trên góc đó. Dựng điểm B thuộc tia Ox, điểm C thuộc tia Oy sao cho tam giác ABC có chu vi nhỏ nhất.
Cho đường thẳng AB. kẻ Ax, By⊥AB. Trên Ax lấy C, Trên By lấy D sao cho AB2=4AC.BD.Gọi I laf trung điểm của AB.
a) Chứng minh: IC2+ID2=CD2
b) Chứng mình:△IDC đồng dang △AIC và △ BDI
c) Gọi H là hình chiếu của I trên CB. Chứng minh IH=IA=IB
Cho tam giác ABC, trung tuyến AM . Lấy D trên AC sao cho DA= \(\dfrac{1}{2}\)DC .Gọi I là giao điểm của AM và DB , gọi E là trung điểm DC
a, chứng minh AD=DE=EC
b, Chứng minh DEMB là hình thang
C, Chứng minh IA=IM
Cho hình chử nhật có AB=2AD, gọi E,I lần lượt là trung điểm của AB và Cd. Nối D với E. Vẽ tia Dx vuông goc với DE, tia Dx cắt tia đối của tia CB tai M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểm của DK và EM
a)Tính số đo góc DBK
b) Gọi F là chân đường vuông góc hạ từ K xuông B. CMR: 4 điểm A,I,G,H cùng nằm trên 1 đường thẳng
Cho \(\Delta ABC\), trên đường trung tuyến AM lấy các điểm D và E sao cho AD = DE = EM. Trên tia đối của tia CB lấy điểm F sao cho CF = CM. Gọi N là giao điểm của DF và AC. C/minh: B, E, N thẳng hàng.
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho tam giác ABC trên đường trung tuyến AM lấy các điểm D và E sao cho AD = DE = EM . Trên tia đối của CB lấy điểm F sao cho CF = CM . Gọi N là giao điểm của DF với AC . Chứng minh B, E, N thẳng hàng