Cho x y z > 0. CMR
\(\frac{X^3}{X^2+XY+Y^2}+\frac{Y^3}{Y^2+YZ+Z^2}+\frac{Z^3}{Z^2+ZX+X^2}\ge\frac{X+Y+Z}{3}\)
Cho x,y, z >0 chứng minh \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}\)
cho x , y , z > 0 thỏa mãn xy + yz + zx = 3xyz
CMR: \(A=\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y,z>0 , x+y+z=1
\(\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{3}{2}\)
Cho x, y, z > 0 và \(x^2+y^2+z^2=1\). Cm: \(\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge\frac{3\sqrt{2}}{2}\)
cho x,y,z là các số thực dương chứng minh rằng :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
Cho x, y, z >0 thỏa x + y + z >= 3. Chứng minh rằng : \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
cho x;y;z>0 thỏa mãn x+y+z=3.CMR:\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}\ge\frac{3}{2}\)
Chp x, y, z > 0. Chứng minh:
\(\frac{^{x^3}}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)