Câu hỏi của Trần Thành Phát Nguyễn - Toán lớp 9 - Học toán với OnlineMath
\(\sqrt{x^2+\frac{1}{x^2}}=\sqrt{\frac{9}{10}}\cdot\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(\frac{1}{9}+1\right)}\ge\sqrt{\frac{9}{10}}\cdot\left(\frac{x}{3}+\frac{1}{x}\right)\)
Tương tự:\(\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{y}{3}+\frac{1}{y}\right);\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{z}{3}+\frac{1}{z}\right)\)
Cộng lại ta có:
\(LHS\ge\sqrt{\frac{9}{10}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{3}\right)\ge\sqrt{\frac{9}{10}}\left(\frac{9}{x+y+z}+\frac{x+y+z}{3}\right)\)
\(=\sqrt{\frac{9}{10}}\cdot\left(\frac{x+y+z}{3}+\frac{1}{3\left(x+y+z\right)}+\frac{26}{3\left(x+y+z\right)}\right)\)
ai đó giúp em đoạn này với.Em cô si xong thấy không đúng ạ :(
Ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c,d , ta có :
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) (*)
\(< =>a^2+b^2+c^2+d^2+2.\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(< =>2.\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)\(< =>\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(< =>a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(< =>VT-VP=\left(ad-bc\right)^2\ge0\left(đpcm\right)\)
Sử dụng liên tiếp bất đẳng thức (*) , ta có : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)}^2+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)(+)
Tiếp tuc ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(**)
Sử dụng bất đẳng thức AM-GM : \(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế \(< =>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\left(đpcm\right)\)
Ta có bất đẳng thức (**) đúng nên suy ra được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)(***)
Bất đẳng thức (***) tương đương với \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\)
Mà theo đánh giá của AM-GM thì \(\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}}=2\)(****)
Vfa theo giả thiết \(x+y+z\le1< =>\frac{1}{x+y+z}\ge1< =>\frac{80}{\left(x+y+z\right)^2}\ge80\)(*****)
Cộng theo vế hai bất đẳng thức (****) và (*****) ta được : \(\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge2+80=82\)
Khi đó \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge82\)(++)
Từ (+) và (++) ta suy ra được : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{82}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy bài toán đã được hoàn tất chứng minh !