\(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự với mấy cái còn lại, thay vô và rút gọn.
\(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự với mấy cái còn lại, thay vô và rút gọn.
cho 3 số dương x,y,z thỏa mãn xy+yz+xz =1
tính T =\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)
cho x,y,z thỏa mãn xy+yz+xz=1. Tính giá trị của biểu thức:
\(A=x.\sqrt{\frac{\left(1+y^2\right).\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\frac{\left(1+z^2\right).\left(1+x^2\right)}{1+y^2}}+z.\sqrt{\frac{\left(1+x^2\right).\left(1+y^2\right)}{1+z^2}}\)
cho x,y,z>0 và xy+yz+xz=1
tính \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
cho x;y;z>0 xy+yz+xz=1 tinh\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
cho 3 số dương x,y,z thỏa mãn: xy+yz+xz = 1
tính: \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho 3 số dương x,y,z thỏa mãn điều kiện: xy+yz+xz=1.Tính
\(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x;y;z>0 xy+yz+xz=1 tinh
A= \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho xy +yz +xz = 1
Tính A = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)
Cho x, y, x >0 thỏa mãn xy+yz+xz = 1
Tính P= x\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) + y\(\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}\) + z\(\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)