Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)
Cho 3 số thực x,y,z#0, đôi một phân biệt và thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính P= \(\dfrac{yz}{x^2+2yz}+\dfrac{zx}{y^2+2zx}+\dfrac{xy}{z^2+2xy}\)
Giúp Mình Với :33
Cho \(x,y,z\ne0\)và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Chứng minh rằng
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
gpt :
a.2x^2+y^2+z^2=xy+yz+zx
b.2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5=0
c,x^6-2x^3+x^2-2x+2=0
gpt
2x^2+y^2+z^2=xy+yz+zx
2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5=0
x^6-2x^3+x^2-2x+2=0
Cho xyz = 1, tính P= \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹx+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
c/m 1) x^2+y^2+z^2 >=2xy-2zx+2yz
2)x^4 +y^4+z^2+1>=2x(xy^2-x+z+1)
x + y + z = 0. Tính ((xy + 2z^2)(yz + 2x^2)(xz + 2y^2))/((2xy^2 + 2yz^2 + 2zx^2 + 3xyz)^2)
x ≠ y ≠ z thoả mãn 1/z+1/y+1/z=0.Tính M= yz/(x^2+2yz)+xz/(y^2+2xz)+xy/(z^2+2xy) ai giải được mình tick nhiệt tình cho