ta có: (x+y+z)2=0
\(\Leftrightarrow\)x2+y2+z2+2(xy+z+xz)=0
\(\Leftrightarrow\)1+2(xy+yz+xz)=0
\(\Leftrightarrow\)xy+yz+xz=\(\frac{-1}{2}\)
lại có x2.y2+y2.z2+x2.z2=(xy+yz+xz)2-2xyz(x+y+z)=\(\frac{1}{4}\)
\(\Rightarrow\)x4+y4+z4=(x2+y2+z2)2-2(x2.y2+y2.z2+x2.z2)=\(1-2.\frac{1}{4}\)=\(\frac{1}{2}\)
vậy x4+y4+z4=\(\frac{1}{2}\)
(tick nka)