\(a,x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy\right]\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=a.\left(a^2-3b\right)\)
\(=a^3-3ab\)
Theo phần a,
\(x^2+y^2=a^2-b\)
Ta có:
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-b\right)^2-2b^2\)