Lời giải:
\(x^4+y^4=x^4+2.x^2y^2+y^2-2(xy)^2\)
\(=(x^2+y^2)^2-2(xy)^2=[(x+y)^2-2xy]^2-2(xy)^2\)
\(=(a^2-2b)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
---------------------------
\(x^5+y^5=(x^4+y^4)(x+y)-x^4y-xy^4\)
\(=(x^4+y^4)(x+y)-xy(x^3+y^3)=(x^4+y^4)(x+y)-xy[(x+y)^3-3xy(x+y)]\)
\(=(a^4-4a^2b+2b^2)a-b(a^3-3ab)\)
\(=a^5-4a^3b+2ab^2-a^3b+3ab^2=a^5-5a^3b+5ab^2\)