Ta có: \(\hept{\begin{cases}x=\frac{y}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{8}\end{cases}}\Rightarrow\frac{x}{3}=\frac{y}{6}=\frac{z}{8}\)
Đặt: \(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=k\Rightarrow\hept{\begin{cases}x=3k\\y=6k\\z=8k\end{cases}}\)
Khi đó \(\frac{x+y+z}{x+y-z}=\frac{3k+6k+8k}{3k+6k-8k}=17\)
b) Từ \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\left(\frac{a-b}{c-d}\right)^{2017}\)(1)
Mặt khác: \(\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\frac{a^{2017}-b^{2017}}{c^{2017}-d^{2017}}\)(2)
Từ (1) và (2) =>đpcm
Đặt
Khi đó \(\frac{x+y+z}{x+y-z}=\frac{3k+6k+8k}{3k+6k-8k}=17\)
b) Từ \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\left(\frac{a-b}{c-d}\right)^{2017}\left(1\right)\)
Mặt khác \(\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\frac{a^{2017}-b^{2017}}{c^{2017}-d^{2017}}\left(2\right)\)
Từ (1),(2)
=> (a-b/c-d)^2007=a^2007-b^2007/c^2007-d^2007