Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko
Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko
Cho x,y dương thỏa mãn: \(x^3+y^4\le x^2+y^3\).Chứng minh rằng: \(x^3+y^3\le x^2+y^2\)
cho\(\hept{\begin{cases}x,y>0\\x^3+y^4\le x^2y^3\end{cases}}\)chứng minh rằng
a) \(x^2+y^3\le x^2+y^2\)
b) \(x^2+y^3\le x+y^2\)
Cho x+y=2. Chứng minh rằng: \(x^{2011}+y^{2011}\le x^{2012}+y^{2012}\)
Cho x, y, z là 3 số thực tùy ý thỏa mãn x + y + z = 0 và \(-1\le x\le1,-1\le y\le1,-1\le z\le1\)
Chứng minh rằng đa thức \(x^2+y^4+z^6\le2\)
cho x, y, z \(\ge\)0. CM (x+y)(y+z)(z+x) \(\ge\)8xyz
Cho a^2 + b^2 \(\le\)2 .CM a+b bé hơn hoặc bằng 2
Tính giá trị biểu thức:
a) A = 3 x 2 - 2 ( x - y ) 2 - 3 y 2 tại x = 4 và y = -4;
b) B = 4(x - 2)(x +1) + ( 2 x - 4 ) 2 + ( x + 1 ) 2 tại x = - 1 2 ;
c*) C = x 2 (y-z) + y 2 (z-x) + z 2 (x-y) tại x = 6, y = 5 và z = 4;
d*) D = x 2017 - 10 x 2016 + 10 x 2015 - . . . - 10 x 2 + l0x -10 với x = 9.
CM Nếu \(0\le y\le x\le1\)thì \(x\sqrt{y}-y\sqrt{x}\le\frac{1}{4}\)
Cho x+y=2 Chứng minh rằng:
x2017+y2017\(\le\)x2018+y2018
Chứng minh rằng :
\(\frac{3-\sqrt{10}}{2}\le F=x+2y\le\frac{3+\sqrt{10}}{2}\) trong đó x, y là 2 số thực thỏa mãn \(x^2+y^2=x+y\)