Cho x>0, y>0 và x+y = 1
Tìm giá trị lớn nhất của A = \(\sqrt{x}+\sqrt{y}\)
Cho biểu thức :
\(Y=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a) Rút gọn Y .
b) Tìm giá trị nhỏ nhất của Y .
c) Cho x lớn hơn hoặc bằng 4 . Chứng minh :
Y - gía trị tuyệt đối của Y = 0 .
cho x>0, y>0 thỏa mãn 1/x+1/y=1/2. tìm giá trị nhỏ nhất của A= \(\sqrt{x}+\sqrt{y}\)
cho x,y thay đổi thỏa mãn 0<x<1; 0<y<1
tìm giá trị lớn nhất của biểu thức : P= x+y+x\(\sqrt{1-y^2}\) +y\(\sqrt{1-x^2}\)
Cho x,y,z >0 . Tìm giá trị lớn nhất của \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
cho X, y>=0 sao cho \(X^2\)+\(Y^2\)=1.
Tìm giá trị nhỏ nhất và giá trị lớn nhất của A=\(\sqrt{2X+1}\)+\(\sqrt{2Y+1}\)
Cho x,y thỏa mãn 0<x<1 , 0<y<1. Tìm giá trị nhỏ nhất của \(M=x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
cho 2 số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\) . tìm giá trị lớn nhất , giá trị nhỏ nhất của A =x+y
cho x,y,z >0 và x+y+z=xyz. Tìm giá trị lớn nhất biểu thức: \(P=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)