Có: \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Có: \(x^4+y^4\ge2x^2y^2\)
\(\Leftrightarrow2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Suy ra: \(x^4+y^4\ge\frac{1}{8}\)
Vậy min M=1/8 khi \(x=y=\frac{1}{2}\)