1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=3 \)
biết x,y,z>0 và x+y+z=xy+xz+yz=6xyz
cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Cho x,y,z > 0 ; x + y + z = 1
CMR: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\le\frac{3}{2}\)
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
CHO X,Y,Z LÀ CÁC SỐ THỰC KHÔNG ÂM THỎA MÃN X+Y+Z=3 VÀ XY+YZ+ZX KHÁC 0 . CMR :
\(\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\le\frac{25}{3\sqrt[3]{4.\left(xy+yz+zx\right)}}\)
thanks in advance <3
Cho x,y,z ko âm
x+xy+y=1 ; y+yz+z=3 ; z+zx+x=7
Tính M= x +y^2 +z^3
Cho các số thực dương x,y,z thỏa mãn x^3+y^3+z^3=24.Tìm GTNN cua biểu thức
P=\((xyz+2(x+y+z)^2)/(xy+yz+zx)-8/(xy+yz+zx+1)\)