Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
Tìm m để hai phương trình sau tương đương: 2x^2-8x+15=0 và (2x-6)(mx-3m+1)=0
chứng minh phương trình a(x-a^2+1)=a^2+2-2x luôn có nghiệm dương với a khác -2
Chứng minh đa thức sau luôn nhận giá trị không âm :
a) 2x2+9y2+3z2+6xy-2xz+6yz
b) 8x2+y2+11z2+4xy-12xz-5yz
c) 5x2+5y2+5z2+6xy-8xz-8yz
A=x^2+xy-5x-5y với x=15x1/5;y=14x4/5
B=xyz-xy-yz-zx+x+y+z-1 với x=9;y=51;z=101
C=y^3+4x^2y+4xy+8x^3+2xy^2 với 2x+y=1
Bt1 tìm x,y,z thỏa mãn a) 5x^2+3y^2+3z^2-6xy+8x+12z+20=0
b)2x^2+2y^2+2xy-6x-6y+6=0
c x^2 +5y^2-4xy+10x-22y+26=0
Bt2 cho a,b,c là các số ko đồng thời bằng 0chứng minh rằng ít nhát 1 trong cá biểu thức sau có giá trị dương
X=(a-b+c)^2+8ab
Y=(a-b+c)^2+8bc
z=(a-b+c)^2-8ac
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
CM các đa thức sau không âm:
a) \(2x^2+9y^2+3z^2+6xy-2xz+6yz\)
b) \(5x^2+5y^2+5z^2+6xy-8xz-8yz\)
c) \(8x^2+y^2+11z^2+4xy-12xz-5y^2\)
cho a=x^3y-xy^3+y^3z-yz^3+z^3x/x^2y-xy^2+y^2z-yz^2+z^2x-zx^2 a) với giá trị nào của x,y,z thì A có nghĩa b) tính giá trị của A khi x=-1/2, y=5/2,z=8
tính A+B+C,A bằng x mũ 3 y mũ 2.B bằng x y mũ 3z .C bằng x y mũ 3z và x mũ 2+y mũ 2+ z mũ 2 bằng 1.xy bằng1/z
a) x^2+2xy+y^2-16
b) 3x^2+5x-3xy-5y
c) 4x^2-6x^3y-2x^2+8x
d) x^2-4-2xy+y^2
e) x^3-4x^2-12x+27
g) 3x^2-18x+27
h) x^2-y^2-z^2-2yz
k) 4x^2(x-6)+9y^2(6-x)
l)6xy+5x-5y-3x^2-3y^2