Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)
\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)