Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yim Yim

cho xy + yz + xz =1 tìm giá trị nhỏ nhất của x4+y4+z4

Phan Nghĩa
6 tháng 9 2020 lúc 8:01

C1 : Ta sẽ chứng minh bất đẳng thức sau : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Suy ra được : \(x^2+y^2+z^2\ge xy+yz+zx=1< =>\left(x^2+y^2+z^2\right)^2\ge1\)

\(< =>x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\ge1\)(*)

Bất đẳng thức chứng minh có thể viết theo dạng : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

\(< =>2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)< =>2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : \(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2+2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2+1\)

\(< =>3\left(x^4+y^4+z^4\right)+2\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge1\)

\(< =>3\left(x^4+y^4+z^4\right)\ge1< =>x^4+y^4+z^4\ge\frac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Phan Nghĩa
6 tháng 9 2020 lúc 8:51

C2 : Ta có : \(x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)

Sử dụng bất đẳng thức \(a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

Khi đó : \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)

\(=\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\)(*)

Ta sẽ chứng minh bất đẳng thức phụ sau : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Áp dụng bất đẳng thức trên ta được :

 \(\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\ge\frac{2}{3}\left(xy+yz+zx\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)( Do \(xy+yz+zx=1\)) (**)

Từ (*) và (**) suy ra \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

Hay \(x^4+y^4+z^4\ge\frac{1}{3}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đỗ Ngọc Giang
Xem chi tiết
Bảo Trần Thành
Xem chi tiết
Kẻ Bí Mật
Xem chi tiết
chintcamctadungnennoitrc...
Xem chi tiết
ninja siêu đẳng
Xem chi tiết
Angry Birds
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Trường Tuệ Lê
Xem chi tiết
phùng tấn dũng
Xem chi tiết