cho x,y,z>0 thỏa mãn xyz=1. chứng minh rằng 1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2
cho xyz là các số không âm thỏa mãn xyz=1. Chứng minh rằng: P= 1/[(x+1)^2)+y^2+1] + 1/[(y+1)^2+z^2+1] + 1/[(x+1)^2+ x^2+1] nhỏ hơn hoặc bằng 1/2
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x, y, z \(>0\)và thỏa mãn: x + y + z = xyz. Chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Cho x, y, z > 0 thỏa mãn xyz = 1
Chứng minh: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\left(1+x+y+z\right)\)
cho \(x,y,z>0\) thỏa mãn \(x^2+y^2+z^2=2\)Chứng Minh : \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)
cho x, y, z thỏa mãn x+ y + z = xyz chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
cho x,y,z dương thỏa mãn xyz=1. Chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)