=[(x+1)(x+6)][(x+3)(x+4)]+9
Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)2 rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương
=[(x+1)(x+6)][(x+3)(x+4)]+9
Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)2 rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương
Cho x, y thuộc Z. Chứng minh các biểu thức sau là số chính phương
A=x(x-y)(x+y)(x+2y)+y4
B=(x+1)(x+3)(x+4)(x+6)+9
C=(x-y)(x-2y)(x-3y)(x-4y)+y^4
Chứng minh rằng với x,y thuộc Z thì:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)là số chính phương
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Chứng minh rằng với mọi số nguyên \(x,y\) thì \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương.
a)CMR với mọi x,y thuộc Z thì
S=(x+y)(x+2y)(x+3y)(x+4y)y^4 là số chính phương
b) Cho T=(t-1)(t-3)(t-4)(t-6)+9
1)CM: T lớn hơn hoặc bằng 0 với mọi t
2)T là số chính phương với mọi t thuộc Z
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
Chứng minh rằng với mọi số nguyên của x,y thì giá trị của đa thức
P= (x+y)(x+2y)(x+3y)(x+4y)+y^4 là một số chính phương
chứng minh rằng với x, y nguyên thì: A= y^4 + (x+y)(x+2y)(x+3y)(x+4y) là số chính phương
Chứng tỏ các đa thức sau
Ko phụ thuộc vào biến x, y
a)(x-1)(x^2+y) -(x^2-y) (x-2)-x(x+2y)+3(y-5)
b) 6(x^3y+x-3)-6x(2xy^3+1)-3x^2y(2x-4y^2)
Ko phụ thuộc vào biến y
(x^2+2xy+4y^2)(x-2y)-6(1/2-4/3y^3)