- Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(4x^2+9y^2\right)\left(9+16\right)\ge\left(2x.3+3y.4\right)^2=\left(6x+12y\right)^2=5^2=25\)
\(\Rightarrow4x^2+9y^2\ge1\left(đpcm\right)\)
- Dấu "=" xảy ra \(\Leftrightarrow\dfrac{2x}{3}=\dfrac{3y}{4};6x+12y=5\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{10}\\y=\dfrac{4}{15}\end{matrix}\right.\)