cho 2 số dương x;y thỏa mãn x2 + y2 = 1, tìm GTLN của biểu thức :
\(P=\dfrac{2xy+1}{x+y+1}\)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
Cho các số dương x, y thỏa mãn \(\frac{1}{x}+\frac{1}{y}=2\). Tìm GTLN của biểu thức \(C=\frac{1}{x^4+y^2+2xy^2}+\frac{1}{y^4+x^2+2x^2y}\)
Cho x,y là hai số dương thỏa mãn xy=1. Tính GTLN của:
\(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x, y> 0 thỏa xy=1
Tìm GTLN \(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x,y là hai số dương thay đổi thỏa mãn xy=1, tìm gtln của \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x>y>0 thỏa mãn xy=1. Tìm GTLN
\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x,y là 2 số thỏa mãn
\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
Tìm GTLN của xy
Cho x,y là hai số dương thỏa mãn \(xy=1\). Tìm GTLN của biểu thức \(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)